Biologia

Metabolismo celular.

mayo 27, 2016



Metabolismo celular.

El metabolismo comienza en el citosol con la glicolización, luego en mitocondria ocurriran los procesos de descarboxilacion oxidativa, ciclo de krebs, y por ultimo la respiracion oxidativa. 

Glicolisis. 


Las mitocondrias son organelos grandes formados por una membrana externa porosa y una membrana interna muy impermeable, formada sobre todo por pliegues (crestas) que contienen gran parte de los mecanismos necesarios para la respiración aeróbica.
La porosidad de la membrana externa se debe a las proteínas integrales llamadas porinas. La configuración de la membrana interna y la fluidez aparente de su bicapa facilitan las interacciones de los componentes necesarios durante el transporte de electrones y la formación de ATP. La membrana interna rodea una matriz gelatinosa que además de proteínas contiene un sistema genético que incluye DNA, RNA, ribosomas y todos los mecanismos necesarios para transcribir y traducir la información genética. Muchas de las propiedades de las mitocondrias pueden explicarse con su supuesta evolución a partir de bacterias simbióticas antiguas.

La mitocondria es el centro del metabolismo oxidativo en la célula y convierte los productos del catabolismo de carbohidratos, grasas y proteínas en energía química almacenada en ATP. El piruvato y el NADH son los dos productos de la glucólisis.
El piruvato se transporta a través de la membrana mitocondrial interna, donde se descarboxila y combina con la coenzima A para formar acetil-CoA, la cual se condensa con oxaloacetato para formar citrato, que alimenta al ciclo del ácido tricarboxílico. A su paso por las reacciones del ciclo del ATC, se retiran dos de los carbonos del citrato y se liberan como CO2, que representa el estado más oxidado del átomo de carbono. Los electrones retirados de los sustratos se transfieren al FAD y NAD+ para formar FADH2 y NADH. Los ácidos grasos se degradan para formar acetil-CoA, la cual alimenta al ciclo del ATC, y los 20 aminoácidos se degradan en piruvato, acetil-CoA o productos intermedios del ciclo del ATC. Por lo tanto, el ciclo del ATC es la vía en la que convergen las principales vías catabólicas de la célula.

Ciclo de Krebs. 


Los electrones transferidos de los sustratos al FADH2 y NADH pasan por una cadena de portadores de electrones hasta el O2, lo que libera energía que se emplea para generar un gradiente electroquímico a través de la membrana mitocondrial interna.
El movimiento controlado de los protones de regreso por la membrana mediante una enzima productora de ATP se emplea para impulsar la formación de ATP en el sitio catalítico de la enzima. Cada par de electrones de NADH libera energía suficiente para impulsar la formación de unas tres moléculas de ATP, mientras que la energía liberada de un par de electrones de FADH2 permite la formación de dos moléculas de ATP

La cantidad de energía liberada como un electrón se transfiere de un donante (agente reductor) a un receptor (agente oxidante) y puede calcularse a partir de la diferencia en el potencial redox entre las dos parejas.
El potencial redox estándar de una pareja se mide en condiciones estándar y se compara con la pareja H2-H+. El potencial redox estándar de la pareja NADH-NAD+ es –0.32 V, reflejo del hecho de que NADH es un agente reductor fuerte, es decir, que transfiere con facilidad sus electrones. El potencial redox estándar de la pareja H2O–O2 es +0.82 V, lo que indica que el O2 es un agente oxidante potente, con gran afinidad por los electrones. La diferencia entre estas dos parejas, que equivale a 1.14 V, proporciona una medida de la energía libre liberada (52.6 kcal/mol) cuando se pasa un par de electrones de NADH a lo largo de la cadena transportadora de electrones hasta el O2.

La cadena transportadora de electrones contiene cinco tipos diferentes de portadores: citocromos que contienen hemo, flavoproteínas que poseen el nucleótido flavina, proteínas con hierro-azufre, átomos de cobre y quinonas.
Las flavoproteínas y las quinonas son capaces de aceptar y donar átomos de hidrógeno, en tanto que los citocromos, átomos de cobre y proteínas hierro-azufre pueden aceptar y donar sólo electrones. Los portadores de la cadena de transporte de electrones están dispuestos en orden creciente de potencial redox positivo. Los diversos portadores se organizan en cuatro complejos multiproteicos grandes. El citocromo c y la ubiquinona son portadores móviles y emiten electrones entre los grandes complejos. Cuando los pares de electrones pasan por los complejos I, III y IV, se traslada una cantidad específica de protones de la matriz a través de la membrana y hacia el espacio intermembranoso. El traslado de protones mediante estos complejos transportadores de electrones establece el gradiente de protones en el que se almacena la energía. El último de los complejos es la oxidasa de citocromo, que transfiere electrones del citocromo C a O2, y lo reduce para formar agua, paso que también retira protones de la matriz y contribuye al gradiente de protones.

La translocación de protones crea una separación de carga a través de la membrana, además de una diferencia en la concentración de protones.
Por consiguiente, el gradiente de protones tiene dos componentes, un gradiente de voltaje y otro de pH, cuyas magnitudes dependen del movimiento de otros iones a través de la membrana. Juntos, los dos componentes constituyen una fuerza motriz de protones (Δp). En las mitocondrias de los mamíferos, casi 80% de la energía libre de Δp se representa por el voltaje y 20% radica en el gradiente del pH.

La enzima que cataliza la formación de ATP es un complejo multiproteico grande llamado sintetasa de ATP.
La sintetasa de ATP contiene dos partes distintas: una cabeza F1 que sobresale hacia la matriz e incluye sitios catalíticos, y una base F0 que está incrustada en la bicapa de lípidos y forma un canal por el cual se conducen protones del espacio intermembranoso hacia la matriz. En la hipótesis de cambio de unión para la formación de ATP, que ya tiene una aceptación general, el movimiento controlado de los protones por la porción F0 de la enzima induce la rotación de la subunidad gamma de la enzima, la cual transcurre por el tallo y conecta las porciones F0 y F1 de la enzima. La rotación de la subunidad gamma se logra con la rotación del anillo c de la base F0, inducida por el movimiento de protones a través de semicanales en la subunidad a. La rotación de la subunidad gamma induce cambios en la conformación de los sitios catalíticos F1, lo que impulsa la formación de ATP. La evidencia indica que el paso que requiere energía no es la fosforilación real del ADP, sino la liberación del ATP producido del sitio activo, que ocurre como respuesta a los cambios inducidos en la conformación. Además de la formación de ATP, la fuerza motriz de protones también suministra la energía necesaria para varias actividades de transporte, incluida la captación de ADP en la mitocondria a cambio de la liberación de ATP al citosol, la captación de fosfato e iones calcio y la importación de proteínas mitocondriales.

En el siguiente link encontrara unas diapositivas que ayudaran a mejorar su comprensión respecto al tema.  (Si asiste a las ayudantías de biología son las mismas que utilice para explicar la clase)

https://www.dropbox.com/sh/25zkxiixchzawnc/AAAdi4MYAc9gBSWc5u3ZmDN4a?dl=0


You Might Also Like

0 comentarios

Biología Celular.

Biología Celular.
Para estudiantes de salud.